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Abstract

The problem of vortex-induced vibration (VIV) on a circular cylinder has historically been considered from the

viewpoints of both self-excited and forced oscillations. In an intermediate Reynolds number range, the self-excited case

typically has an irregular displacement response that occurs without a constant amplitude or frequency. In a forced

oscillation of constant amplitude and frequency in this intermediate range, the applied force can either lead or lag the

cylinder oscillation with a constant phase angle. In a self-excited oscillation, the phase angle could possibly vary a great

deal because of a more irregular oscillation. This study presents a set of phase angles determined from 2-D CFD/LES

calculations of the self-excited oscillations of a cylinder at Re ¼ 8000 over a range of lock-on conditions. The results

show that the phase angles determined from the self-excited case do not have a consistent trend but behave in an

irregular manner, not at all like those in a forced sinusoidal oscillation. Both a spectral analysis and a complex

demodulation analysis of the displacement and lift coefficient confirm that this self-excited behavior does not occur at a

single frequency or at a constant phase angle at the Reynolds number for this study.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Vortex-induced vibration (VIV) caused by a fluid flowing past a bluff body has been a subject of interest to structural

engineers and fluid mechanicians for years. Numerous experimental studies have been conducted on this self-excited

oscillatory response of a bluff body to the shedding of vortices. The vibratory response occurs as the shedding frequency

approaches the natural frequency of the structural member, i.e., the bluff body. When the natural frequency and the

vortex shedding frequency are approximately the same (within 710%), the vortex shedding frequency connects to the
natural frequency (or an approximation of it) and remains at that value for an appreciable increase in fluid velocity.

During this connected period, the cylinder can vibrate at noticeable amplitudes.

The equation of motion representing the transverse (only) motion of a cylinder in a uniform approach flow is

generally expressed as

my00 þ cy0 þ ky ¼ FLðtÞ, (1)

where y is the transverse displacement, m is the structural mass (no added mass effects are included in m), c is the

structural (or material) damping, k is the transverse structural stiffness, and FL(t) is the fluid-forcing function, per unit
e front matter r 2005 Elsevier Ltd. All rights reserved.
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length of the cylinder, in the y (transverse) direction, initiating the cylinder response. The primes indicate the derivatives

with respect to the dimensional time t. The nondimensional form of Eq. (1) is

€Y þ zð4pf vacÞ
_Y þ ð2pf vacÞ

2Y ¼
CLðtÞ
m�p

, (2)

where Y ¼ y=R, t ¼ Uot=R, m* is the ratio of the effective cylinder density to the fluid density, i.e., the mass factor,

f vac ¼ ðf d
vacRÞ=Uo is the cylinder nondimensional natural frequency in a vacuum with f d

vac as the corresponding

dimensional natural frequency, z is the structural damping factor and CLðtÞ ¼ FLðtÞ=RU2
o. The dots indicate the

derivatives with respect to the nondimensional time t.
It is Eq. (1) or (2) that must be solved to determine the cylinder displacement in a self-excited oscillation. When the

motion is a forced oscillation, then the cylinder inertia force must be subtracted from the FL(t) term in Eq. (1). When the

motion is self-excited, then the added mass is not a factor and the CL(t) term in Eq. (2) is represented independently of

the added mass. If CL(t) is measured, then it must be, by definition, compatible with the calculated and/or measured
cylinder displacement from Eqs. (1) or (2). The added mass term is not represented explicitly when CL(t) is determined
using the calculated pressure and shear stress distributions on the cylinder because the fluid force term CL(t) (or FL(t))

contains the added-mass effects implicitly. When CL(t) is calculated, it is determined by solving the governing fluid flow
equations, subject to whatever wake turbulence model is used, for sufficiently large Reynolds numbers.

There is certainly the possibility of a phase angle between the fluid forcing function and the displacement of the

cylinder. The value of the phase angle would depend on whether the self-excited oscillation is periodic with constant

amplitude or is an irregular motion, i.e., neither constant period nor amplitude. Both situations have been observed

experimentally and computationally. It is not yet clear what the factors are that produce one situation over the other.

In constant-amplitude, forced-oscillation investigations, it has been observed from many studies that the sinusoidal

oscillation trails the force by a constant phase angle. A reasonable approximation to the dimensional force and the

response is given by

yðtÞ ¼ Ao sin oext, (3)

FLðtÞ ¼ Fo sinðoext þ fÞ, (4)

where Ao is the amplitude of oscillation, Fo is the force amplitude, oex is the excitation frequency, and f is the phase
angle. The measurement of the fluid driving force is relatively easy in the forced-oscillation problem and the actual force

on the cylinder; i.e., the applied force by the flow field, is obtained by subtracting the inertia force of the cylinder, as a

result of the added mass, from the measured force that contains the forces from the flow stresses and the added mass.

The oscillation amplitude in these forced-oscillation studies is typically sinusoidal with a fixed amplitude and a

prescribed frequency. In this form of cylinder oscillation, the phase angle has typically been found to be approximately

01 or 1801 depending on the physical parameters which control the vortex modes. The reason for this change in phase

angle is due to a change in the mode of vortex shedding, as first noted by Zdravkovich (1982). This change is called

vortex switching and has been observed experimentally by Gu et al. (1994) and numerically by Lu and Dalton (1996).

1.1. Forced oscillations

In the early days of studying VIV, it was felt that an understanding of the forced-oscillation problem would lead to an

understanding of self-excited oscillations. We now know that this reasoning is not strictly correct. However, studies of

the forced-oscillation problem have helped to develop an understanding of self-excited oscillations and the forced-

oscillation problem is still quite interesting in its own right. Early investigations of the forced-oscillation problem were

by Bishop and Hassan (1964), Lienhard and Liu (1967) and Sarpkaya (1978), and more recently by Tutar and Holdo

(2000) and Carberry et al. (2001), among others. Bishop and Hassan (1964) did the first experiments on a cylinder in

forced oscillation. They identified two critical frequencies that provided the bounds for the vortex-switching

phenomenon to occur. Within this frequency range, the vortex formation switched from one side of the cylinder to the

other, which results in a phase angle change from 01 to 1801.

Sarpkaya (1978) also conducted an experimental investigation of the forced-oscillation case. His purpose was to

study the in-phase and out-of phase components of the time-dependent force and then to use these force components to

predict the dynamic response of the cylinder undergoing forced oscillation. Sarpkaya represented the transverse force in

the Morison equation style, decomposing the measured transverse force in terms of drag (CDL) and inertia (CML)

coefficients. He found a sharp decrease in the value of CML at VR ¼ 5:1 in a plot of A/D versus VR (the reduced

velocity, VR ¼ Uo=2Rf ex); this shows clearly that a change in the wake-vortex structure has occurred. (In the definition

of VR, Uo is the approach velocity, R is the cylinder radius, and fex is the oscillatory frequency, f ex ¼ oex=2p.) This
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change leads to a negative value of CML for all A/D values beginning at VR ¼ 5:1. The drag coefficient for the
transverse motion also has a range of negative values, which implies that the cylinder is gaining energy from the fluid in

this range; these negative values of CDL infer synchronization.

The forced-oscillation study of Tutar and Holdo (2000) was a 3-D CFD/LES representation. They did extensive

calculations at Re ¼ 2:4� 104 and A=D ¼ 0:11 (a relatively small oscillation). Tutar and Holdo did not address the
phase-angle problem, but presented their results at four different values of VR and for both 2-D and 3-D cases. They

provided vorticity–contour comparisons at the different reduced velocities which showed a dependence of the contours

on the value of VR. The 3-D calculations were noted to agree more closely to the experimental results, as expected.

Carberry et al. (2001) also examined the forced-oscillation problem experimentally, subject to the phase-angle

behavior described in Eqs. (3) and (4). In particular, they looked at the effect of the frequency ratio fSt/fex on the phase

angle. They found that an increase in oscillatory frequency (or a decrease in vortex-shedding frequency) over a fairly

narrow range could cause a fairly sudden decrease in phase angle from a mean value of approximately 1601 to a mean of

approximately 01. As the phase angle changed, the magnitude of the lift coefficient increased suddenly from about 0.2 to

1.0. These lift-coefficient and phase-angle values had a consistent behavior with slight fluctuations about almost

constant values; they are given here as approximate values from Carberry et al.

Another forced-oscillation CFD study was conducted by Guilmineau and Queutey (2002). They considered a

transversely oscillating cylinder at Re ¼ 185 with 0:8oðf St=f exÞo1:2 and A=D ¼ 0:2 which is a relatively small

amplitude of oscillation. As fSt/fex increased within the specified range, the wake vortex structure became closer to the

cylinder and a limiting position was reached at which time the phenomenon of vortex switching occurred. This is

consistent with the experimental results of Gu et al. (1994) and the computational results of Lu and Dalton (1996).

Note that the changes in the reduced velocity (VR) in the forced-oscillation cases just discussed are caused by

increasing approach velocity (Uo) of the fluid, not by decreasing the excitation frequency (fex). This method of changing

VR introduces an unaccounted-for Reynolds number effect into the results.

To emphasize an earlier comment, the phase angles in the forced-oscillation studies presented herein are noted to be

approximately 01 or 1801 depending on the physical parameters which control the vortex modes. The reason for the

change in phase angle is due to a change in the mode of vortex shedding.
1.2. Self-excited oscillations

In the self-excited case, the cylinder displacement is not controlled externally. The cylinder is free to respond to the

time-dependent force on the cylinder. If we restrict the vibratory response to the transverse direction, then it is the lift

(or transverse force) to which the cylinder responds. In the computational approach (CFD) to solving the self-excited

oscillation (VIV) problem, the issue is to determine the forcing function on the right-hand side of Eq. (1). This is done

by solving the Navier–Stokes equations, subject to whatever turbulence model is used. At each time increment of the

CFD solution, Eq. (1) is solved to obtain the cylinder response. The boundary conditions of the Navier–Stokes

equations are then updated because the cylinder is now moving and the forcing function is found at the next time level.

This process continues ad infinitum. In the experimental approach to the self-excited VIV problem, the approach

velocity is increased incrementally, causing VR to increase which, in turn, causes the cylinder to vibrate when fSt/fvac-
1, where fSt is the vortex shedding frequency of the stationary cylinder and fvac is the natural frequency in a vacuum.

Again, this technique introduces a Reynolds number effect into the results.

Feng (1968), in one of the very first VIV investigations, considered a circular cylinder in a free vibration in a wind

tunnel, a situation which yielded a large value of m*, leading to a relatively high value of m*z (called the mass-damping
term). He examined the effect of the phase angle as defined from Eqs. (3) and (4). Feng did not measure the force but

used the pressure at the stagnation point of the moving cylinder, i.e.,7901 from the approach flow stagnation point on

a cylinder at rest, to relate to the displacement. This concept is equivalent to the transverse force and its relationship to

the displacement. Feng found a trend in the phase angle as his ‘‘magnetic damping’’ increased. At low damping, he

found an overall, but not quite linear, increase of phase angle with increase in reduced velocity. At the lowest value of

magnetic damping, Feng found that the phase angle increased from 01 to 551 as the reduced velocity increased from 0.8

to 0.98. As the magnetic damping increased, the phase angle leveled off to a more-or-less constant value at 01.

Moe and Wu (1990) examined both the forced oscillation and self-excited cases in both one and two degrees of

freedom. They found several significant results: (i) the lock-on range was similar for both free (self-excited) and forced

vibrations; (ii) the lift force was irregular for both cases, especially so for the free vibration case; (iii) the range of VR for

lock-on is greater if the cylinder is allowed to vibrate in both transverse and in-line directions, i.e., two degrees of

freedom. Moe and Wu also found that the phase angle was influenced by small changes in the reduced velocity for

in-line oscillations. At VR ¼ 5:51, Moe and Wu found that the phase angle is 1801, while, at VR ¼ 5:93, the in-line
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self-excited oscillation has a phase angle of 01, while the forced-oscillation case has a phase angle of 1801. However, the

in-line oscillations are not expected to follow the same trends as the transverse oscillations due to a different influence of

the oscillations on the wake structure. And, in fact, they do not, with the maximum in-line oscillations occurring at

different values of VR than for the transverse oscillations.

Brika and Laneville (1993) also presented experimental results for VIV of a cable. Their phase angles are not

identified numerically, but they do show sharp abrupt jumps, apparently when the mode behavior switches from the

initial branch to the lower branch. Brika and Laneville show flow-visualization results for two cases: for amplitude-to-

diameter (A/D) ratios of 0.27 and 0.4, both at VR ¼ 5:84 and Re ¼ 7350. They observed a 2S mode for A=D ¼ 0:27 and
a 2P mode for A=D ¼ 0:4. This does not agree exactly with the Williamson and Roshko (1988) forced-oscillation map
which suggests that the 2P mode is the shedding mode for both cases. However, the Reynolds number (Re ¼ 7350) for

the Brika and Laneville results is notably higher than that on which the Williamson and Roshko map is based. The

larger value of Re is perhaps the explanation for the difference between the Brika and Laneville result and the

Williamson and Roshko map. The hysteresis effect shown in the A/D versus VR plot is closely related to the 2P to 2S

jump as suggested by Sarpkaya (2004) who noted that the 2S mode is the most robust of the known modes while the 2P

mode is perhaps the most precarious. In this context, the term 2S means that two single vortices of opposite sign are

shed per cycle; the term 2P means that two pairs of vortices of opposite sign are shed per cycle; and P+S means two

vortices of opposite sign plus a single vortex are shed per cycle.

Moe et al. (1994) conducted a two degree of freedom experiment on a self-excited oscillation at both subcritical and

critical values of Re. They found considerable in-line motion accompanying the dominant transverse motion with the

latter different from the transverse-oscillation only case. For the subcritical value of Re, the drag coefficient was

observed to increase on the order of 200–300% compared to the fixed-cylinder result. Conversely, the drag coefficient

for the critical case increased to about 80% greater than the fixed-cylinder result at the same value of Re. However, the

magnitude of the transverse oscillation was about one cylinder diameter for the subcritical case and slightly larger for

the critical case. The aspect ratio (length to diameter) was 13 for the subcritical case and 15.6 for the critical case. Moe

et al. did not discuss the lift coefficient and its variation.

Sarpkaya (1995) also examined both free and forced vibrations, allowing both transverse and in-line oscillations to

occur in the free-vibration case. He found that the two degree of freedom response in free oscillations produced about a

20% larger range of fSt/fex ð¼ VRStÞ when the natural frequency was the same in both transverse and in-line directions.

This particular result was obtained at Re ¼ 3:5� 104 which is considerably higher than most of the experimental
studies that are cited herein.

More recently, Khalak and Williamson (1999) also studied the self-excited oscillation problem and assumed that the

displacement and force were described by Eqs. (3) and (4). A brief summary of their results is that they found two

relatively constant phase angles, 01 and 1801, to represent the relationship expressed in Eqs. (3) and (4). This change in

phase angle is attributed solely to the response jumping between the upper and lower branches of the amplitude/

reduced-velocity plot, which apparently is also related to vortex switching as discussed earlier.

In the self-excited vibration problem, simultaneous measurement of force, displacement, and vorticity is relatively

difficult and has been accomplished only recently by Govardhan and Williamson (2000). They assumed that the force

and displacement were out of phase as described by Eqs. (3) and (4). Their measurements yielded results consistent with

the assumption suggested by these two equations. Govardhan and Williamson found a phase angle behavior related to

the initial, upper, and lower branch descriptions of the self-excited cylinder. For the initial and upper branches

(relatively low values of VR), the phase angle was essentially 01. For the lower branch (relatively high values of VR), the

phase angle was 1801. The oscillatory response of the cylinder in this self-excited case was sinusoidal (see Fig. 4 therein)

which led to the constant phase angle values. Govardhan and Williamson did not show the force measurements but,

since the phase angles are essentially constant and the oscillations are sinusoidal, one would expect the transverse force

to be sinusoidal also.

Sarpkaya (2004) has suggested that sinusoidal responses in the free-vibration cases occur when Re is relatively low.

When the value of Re is sufficiently high, the cylinder response is irregular both in amplitude and period. Al-Jamal and

Dalton (2004) have also addressed this issue.

We want to address the question of the behavior of the phase angle in transverse motion VIV. Does this phase angle

have the same kind of behavior as in a forced oscillation, i.e., a switch from 01 to 1801 as the timing of vortex shedding

changes? Does the phase angle have an irregular behavior when the lift coefficient has a nonperiodic, variable-amplitude

behavior? If the latter is correct, what are the factors which influence the phase angle? Possibilities include the approach

flow Reynolds number, the reduced velocity, the mass factor, the amplitude-to-diameter ratio, and the ratio of the

(stationary cylinder) vortex-shedding frequency to the natural frequency of the cylinder in a vacuum. The scope of these

possibilities is greater than we can address based on the information available to us at this point. The full response to

these questions remains for further investigation.



ARTICLE IN PRESS
H. Al Jamal, C. Dalton / Journal of Fluids and Structures 20 (2005) 467–482 471
To complicate the situation, investigators have found that both phase angle behaviors exist. First, we look

at those VIV studies which have produced a phase angle which was either 01 or 1801 (approximately in each

case). Khalak and Williamson (1999) found that the phase angle on the lower branch (relatively high values of VR)

had a reasonably constant value of 01 with occasional positive excursions sometimes reaching 1801. They also

found that the upper/lower transition region had phase angle variations that ranged primarily from 01 to 1801 with

occasional excursions below 01 to 901 and from 1801 to 2701. In addition, for the lower branch, the phase angle

was found to oscillate from approximately 1351 to approximately 2251 about a mean value of approximately 1801.

Khalak and Williamson showed that the phase angle jump from 01 to 1801 occurred with a mode change from 2S

to 2P.

In the Khalak and Williamson experimental study, VR was varied by increasing the velocity which then increased the

value of Re. Their lower branch was for 5000oReo10 000 (approximately) and their upper branch was for

4000oReo7000 (again approximately). Thus, as noted by Sarpkaya (2004), there was some Reynolds number

influence on the results since the location of the transition point in the shear layer has a Reynolds-number dependence

for the range of Reynolds numbers studied by Khalak and Williamson.

Govardhan and Williamson (2000) found that the phase angle was essentially 01 for the initial and upper branches

and fluctuated about approximately 1801 for the lower branch. The fluctuations appear to range from (approximately)

1201 to (approximately) 2151. The range of Reynolds numbers in the Govardhan and Williamson study appears to be

the same as in the Khalak and Williamson study. The experiments in both studies were conducted by increasing the

velocity, hence Re, to increase VR.

There have been several CFD studies which have examined the VIV problem using DNS or LES or RANS when the

Reynolds number was sufficiently high. The computational studies of Karniadakis and his coworkers have made a

notable contribution to the DNS calculation of flow past a vibrating cylinder. Evangelinos and Karniadakis (1999)

conducted a 3-D DNS study of a cable (tension-dominated) experiencing VIV at Re ¼ 1000. Their phase angles were

determined by complex demodulation analysis [see Bloomfield (1976)]. The phase angle behavior had its greatest

variation at several axial positions, ranging from approximately �1001 to 1501. Evangelinos and Karniadakis found the

wake structure to be mixed regarding the 2S, 2P, etc. description of Williamson and Roshko (1988). There was no

dominant vortex structure appearing in the wake with a 2P pattern in the near wake followed by a 2S pattern before

becoming unstable further downstream. That the vortex structure was variable inferred that it was difficult to determine

if the calculated result represented the upper branch or the lower branch.

Blackburn and Henderson (1999) used a spectral element discretization to represent a forced oscillation at A/D for

Re ¼ 500. They concentrated on oscillation frequencies near the fixed-cylinder vortex-shedding frequency. The 2S

shedding mode was observed for all frequency ratios for which calculations were done; the 2P shedding mode was not

observed in this study.

Blackburn et al. (2001) used a spectral element-Fourier spatial discretization method to represent the flow. Their

results are apparently for the lower branch at VR ¼ 6:3, but a considerable difference in amplitude response was found
between results of 2-D and 3-D calculations. The phase angle was found to vary from approximately 401 to

approximately 1101 over the range of times shown for the 3-D results. The lift coefficient was approximately periodic

with a variation in amplitude but with a reasonably constant frequency. A 2P shedding pattern was observed at

Re ¼ 556.

In Al Jamal and Dalton (2004), a 2-D LES calculation was done for the self-excited case at Re ¼ 8000. In the

synchronization range, the response of the cylinder was irregular, with the amplitude and phase angle changing from

cycle to cycle. The lift coefficient had a significant cyclic dependence in its amplitude, which led to a nonsinusoidal

displacement and a nonconstant phase angle. Typical results are shown in Figs. 1 and 2 at Re ¼ 8000, at f vac ¼ 0:09,
z ¼ 0:0 and f vac ¼ 0:12, z ¼ 0:02, respectively. Al Jamal and Dalton did not find the 2S, 2P, etc. patterns in their
calculated results, quite likely because of the very irregular displacement response.

Lucor et al. (2004) obtained a DNS solution of a self-excited rigid cylinder at Re ¼ 1000, 2000 and 3000 and

presented phase angle results for VR ¼ 4:99 and 6.00. They found considerable variation of the phase angles for these
two values of VR, both of which represent the lower branch of the displacement plot. They found that, at Re ¼ 3000, a

wake state existed that was ‘‘characteristic of the lower branch response with a 2P shedding mode’’.

Dong and Karniadakis (2004) obtained a DNS solution for forced oscillation of a cylinder at Re ¼ 10; 000. They
showed a plot of the lift coefficient and displacement curves at f oD=Uo ¼ 0:25, where fo is the oscillation frequency. The

lift and displacement are in phase for this condition with the lift coefficient ranging from a magnitude of approximately

1.4–2.4. At a lower frequency ratio (0.14), the lift and displacement were out of phase by 1801.

Guilmineau and Queutey (2004), in a calculation using a 2-D RANS model for a self-excited oscillation, found that

the phase angle had a sharp, abrupt increase from approximately 01 at VR ¼ 4 to approximately 1801. The phase angle

then decreased to approximately 1601 at VR ¼ 7 and then increased to and leveled off to 1801 at a value of VR of
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Fig. 2. Lift coefficient and A/D versus time for VR ¼ 4:167 (f vac ¼ 0:12) and z ¼ 0:02 for Re ¼ 8000.
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Fig. 1. Lift coefficient and A/D versus time for VR ¼ 5:56 (f vac ¼ 0:09) and z ¼ 0:0 for Re ¼ 8000.
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approximately 11. The vortex-shedding pattern was observed to be 2S at VR ¼ 3:63, 4.51, and 11.0. At VR ¼ 6:91, the
vorticity contours clearly revealed a 2P pattern.
2. Discussion

For the forced-oscillation problem, there seems to be a phase-angle correlation between force and displacement. The

phase angle is either 01 or 1801 depending on the flow parameters. These results are found in the work of Ongoren and

Rockwell (1988), Carberry et al. (2001), and others.

In the discussion that follows, we will use the term phase angle as it is implied for a sinusoidal oscillation. Our phase

angle is defined by the difference in time that the displacement follows the forcing function after each zero upcrossing of

the forcing function.

For the self-excited problem, the phase angle seems to have either a consistent value or a variable value depending on

whether the oscillation is sinusoidal or irregular. Govardhan and Williamson (2000) found a relatively constant phase

angle for their sinusoidal oscillation. Blackburn et al. (2001) found a variable phase angle, but did not specify what form

the oscillation took. Their lift coefficient seems to be sufficiently variable that their oscillation would not have been

expected to be sinusoidal.



ARTICLE IN PRESS
H. Al Jamal, C. Dalton / Journal of Fluids and Structures 20 (2005) 467–482 473
The constant phase angle and sinusoidal oscillation seem to have a connection through the vortex-shedding mode

descriptions such as the 2S, 2P, etc., modes. When the oscillation is sinusoidal, the vortex structures have repeatability

due to the constant-amplitude, constant-period oscillation. That is, the vortex modes are essentially the same from cycle

to cycle when none of the physical parameters, such as A/D, fSt/fvac, Re, etc., have changed. The repeatability of the

cyclic motion leads to the standard vortex modes readily observed in the constant-amplitude forced-oscillation cases.

This situation is different when the self-excited oscillation is not sinusoidal. In this case, neither the amplitude nor the

oscillation frequency is constant. Thus, the shear layers and vortex structures never become sufficiently established for

periodic conditions to prevail. The implication is that the cylinder amplitude and velocity change from cycle to cycle.

This further infers that the time required for repeatable vortex structures probably is not met and these ‘‘expected’’

wake modes (2S, 2P, etc.) are not generated. When the wake structure is not consistent or repeatable, it follows that the

phase angles also are not repeatable and are, therefore, not constant.
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Fig. 5. Phase angles versus cycle number for f vac ¼ 0:12 and z ¼ 0:0 for Re ¼ 8000.
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3. Analysis of the results of Al Jamal and Dalton (2004)

3.1. Phase angles

A random signal, by definition, would typically have many frequencies, each with its own amplitude, contained in the

signal. The results to be discussed herein have both the forcing function and the oscillation amplitude as irregular, not

random, because of the limited number of frequencies in the signal. Using the definition of a random signal, our results

are not random, but irregular, because they have neither a constant amplitude nor a constant frequency. When two

signals are irregular, there is no specific trend to the phase angle behavior between the two analyzed signals. This

suggests that there is an unpredicted irregularity in both the amplitude and the frequency associated with each signal, in
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Fig. 6. Phase angles versus cycle number for f vac ¼ 0:12 and z ¼ 0:02 for Re ¼ 8000.
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addition to the unknown number of frequencies the signal carries. On the other hand, a random signal does not have

the characteristics of an irregular signal.

When two essentially irregular signals, such as force and displacement for a self-excited oscillation with amplitude

and period both variable, are compared to find their phase relationship, there are several approaches that can be taken

to obtain the phase angles. One approach is to analyze every cycle, determining the phase angle for each cycle. A second

approach is to take a number of consecutive cycles, say 10, average them, and then find an average phase angle for this

average cycle. This second approach was suggested by Sarpkaya (2003) and represents a means to determine an average

value over a large number of cycles.

Figs. 1 and 2 show the CL and A/D behaviors for two different self-excited results, one with material damping and

one without, from calculations at or near synchronization done by Al Jamal and Dalton (2004). The average phase-

angle values are defined in terms of the lag that the displacement results have at each zero upcrossing of the force

coefficient curve. Figs. 3–6 show clearly that the phase angles are not constant. Figs. 3 and 6 represent the phase angles

from the results in Figs. 1 and 2, while Figs. 4 and 5 are for another set of parameters, both near synchronization, but

without material damping. In fact, for this approach of analyzing every cycle, the phase angles shown in Fig. 3

(f vac ¼ 0:09 and z ¼ 0:0) range from �921 to +821, with no obvious trend present in the results and no obvious regions

of small phase-angle values. The same lack of a trend of phase-angle variation is also found in the phase angles plotted

in Figs. 4–6. There is, however, a slight difference between the results shown in Fig. 3 and those in Figs. 4–6. As the

value of fvac approaches the value of fSt, as in Figs. 4–6, there exist ranges within the plots where the phase angles are

quite small, but hardly a constant value.

The second approach, constructing an average cycle for every 10 cycles of oscillation, to obtain the corresponding

average phase angle between the transverse force and the cylinder oscillation, yielded results similar to those obtained

for the first method of phase-angle calculation. In Figs. 7 and 8, there is again a wide range of phase angles with no

discernible trend in their behavior.

Figs. 3 and 7 represent the same computational case with the phase angles determined from the two distinct means

discussed above. Similarly, Figs. 6 and 8 represent the same, albeit different from Figs. 3 and 7, computational case. It is

clear from these two comparisons that the phase angle variations are relatively independent of their means of

determination.

An obvious observation from these results is that there is no consistent phase-angle behavior when the cylinder

motion is self-excited with an irregular oscillatory response. It also follows that the standard 2S, 2P, etc. vortex patterns

observed by Williamson and Roshko (1988) would not be expected in this nonsinusoidal oscillation case.
3.2. Spectral decomposition

The phase angle analysis showed that this CFD representation of VIV did not yield a constant phase angle as was

found in the forced oscillation results or in self-excited VIV studies at lower Reynolds numbers. The displacement and

CL calculations do not occur at a constant frequency of oscillation. So, a natural question to ask is the following: What

are the spectral distributions for the time-dependent displacement and lift coefficient?

To answer this question, we analyzed eight different cases from the results of Al Jamal and Dalton (2004), all at

Re ¼ 8000 and m� ¼ 7:85, and the corresponding results are shown in Table 1. The results will be discussed in order for
Table 1

Spectral results for lift and displacement

VR z Amax Displacement CL

Peak mag. Peak freq. Range Peak mag. Peak freq. Range

6.25 0 0.31 13 0.075 0.045–0.11 70, 230 0.065, 0.125 0–0.14

6.25 0.02 0.26 6.9 0.075 0.06–0.12 05, 220 0.07, 0.12 0–0.45

5.55 0 0.33 27 0.08 0.07–0.1 220, 210 0.08, 0.12 0.04–0.13

5.55 0.02 0.3 15 0.08 0.07–0.15 175, 120 0.08, 0.125 0.01–0.13

4.55 0.0 0.31 175 0.1 0.088–0.108 2900 0.96 0.08–0.105

4.55 0.02 0.25 75 0.1 0.083–0.118 1500 0.96 0.06–0.105

4.17 0.0 0.31 122 0.107 0.1–0.12 3800 0.107 0.082–0.115

4.17 0.02 0.24 34 0.107 0.1–0.12 1000 0.107 0.085–0.115
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the spectral representation of displacement and CL. Each of the cases represents a situation which occurs in the lock-on

region.

From Table 1, we see that each of the displacements has a peak frequency slightly less than the natural frequency in a

vacuum (fvac) at each value of VR. Each case has only one dominant displacement peak, even though there is a range of

frequencies, as shown in Table 1, for which there is a nonnegligible spectral content for the displacement. We also note

that the maximum amplitude of oscillation and the peak magnitude of the spectral plot decrease with the inclusion of a

damping term of 0.02. The damping effect is noted to increase as VR increases. A typical set of results for displacement

is shown in Fig. 10 at VR ¼ 4:55 for both the damping and no-damping cases.
Also shown in Table 1 are the CL results. For the lower values of VR, VR ¼ 4:17 and 4.55, the oscillation is in the

early part of the lock-on region in regard to the value of VR. In this region, there is a dominant value of CL magnitude

and a peak frequency that is essentially the same as the displacement peak frequency at the same value of VR. There is

also a range of frequencies for which the spectral content of CL is nonnegligible. The implication is that, in this VIV

case, the lift does not occur at a constant frequency or amplitude. For the two higher values of VR, which are near the

end of the lock-on region, we note that there are two dominant frequencies in the spectral description of CL. In both of

these cases, we note that the lower frequency is essentially the same as the peak frequency for the displacement that was

observed earlier to be slightly less than the value of fvac. The second, and typically higher, frequency is approximately

equal to the vortex shedding frequency of the nonoscillating cylinder at Re ¼ 8000. The fact that these two frequencies

have the values they do suggests that the lock-on effects are diminishing. At VR ¼ 5:55 in Fig. 9, we note that damping
has not influenced the lock-on behavior; the frequency ratio, fSt/fvac, shows the same value for both the damped and

undamped cases. However, at VR ¼ 6:25, which is near the end of lock-in, Fig. 9 shows that the damped oscillation is
out of the lock-on region and the undamped case is still experiencing lock-on.

Fig. 10 shows the displacement power spectrum for VR ¼ 4:55 with and without damping. The effect of damping is to
spread out the spectrum over a wider range of frequencies than for the case with no damping. This can be seen by

comparing Figs. 10(a) and (b), where Fig. 10(b), with damping, has a secondary peak not seen in Fig. 10(a), no

damping. Note also that damping has a noticeable effect in reducing the spectrum peak value which infers a smaller

oscillatory magnitude at the peak frequency.

Fig. 11 shows the CL spectral results for VR ¼ 6:25. Note that the frequency spread for the damped case is greater
than that for the undamped case at this value of VR which is at the high end of the lock-on region. In fact, this

observation is true for each of the other three values of VR. Damping causes a greater spread of the spectral content of

the lift coefficient. It is worthwhile to note that the natural shedding frequency of the nonoscillating cylinder is still

preserved in the flow field even though the cylinder is experiencing lock-on behavior. This frequency preservation is

obvious in the appearance of two dominant spikes in the spectral results of VR ¼ 5:55 and 6.25. However, for the cases
of VR ¼ 4:55 and VR ¼ 4:17, there is one dominant spike in the spectral decomposition, as shown in Fig. 12 for
VR ¼ 4:55. The appearance of one single frequency rather than two distinct frequencies can be interpreted as the
closeness in value between fvac and fSt which results in a more energy concentration at one frequency. This

concentration is evident from the large values the single spike takes for these two cases.
Fig. 9. Shedding frequency in the lock-on region at Re ¼ 8000.
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3.3. Complex demodulation

In addition to the previous analyses of phase angles, we have preformed a complex demodulation of the lift and

displacement signals, as described by Bloomfield (1976), to determine what the time-dependency is of their phase

difference. This method is based on representing a reference signal, i.e., the displacement signal, by

DðtÞ ¼ RDðtÞ exp½iðlDtþ jDðtÞÞ
, (5)
Fig. 10. Displacement spectrum at VR ¼ 4:55 (f vac ¼ 0:11) for Re ¼ 8000: (a) z ¼ 0:0 and (b) z ¼ 0:02.
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where lD is the dominant frequency, RDðtÞ ¼ DðtÞ exp½iðlDtÞ
 is the representative amplitude, and jDðtÞ is the phase
angle of the reference signal and can be computed from exp½iðjDðtÞÞ
 ¼ DðtÞ=RDðtÞ. The same type of representation is
applied to the lift signal. The difference in these two phase angles yields the difference in phase between the lift and the

displacement.

Fig. 13 shows the time variation of the phase difference between the forcing signal (CL(t)) and the displacement signal
(y(t)/D) for f vac ¼ 0:08 with and without damping. The figure shows part of the demodulation signal because the
complete signal is too dense for the phase difference behavior to be observed clearly. It is noticed that the phase
Fig. 11. Lift spectrum at V R ¼ 6:25 (f vac ¼ 0:08) for Re ¼ 8000: (a) z ¼ 0:0 and (b) z ¼ 0:02.
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difference takes on values of p, 0 and �p in an irregular manner. The actual value of the phase angle is lost in this
complex demodulation. The values of p, 0 and �p simply imply that the phase angle is positive, zero, or negative,
respectively. This means that the phase difference between the forcing function and the responsive displacement is

continuously changing between positive and negative values. This irregular switching can be related to the irregular

time-variation in vortex shedding while the cylinder is vibrating and yields, consequently, to an irregular forcing

function.
Fig. 12. Lift spectrum at V R ¼ 4:55 (f vac ¼ 0:11) for Re ¼ 8000: (a) z ¼ 0:0 and (b) z ¼ 0:02.
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In Fig. 14, the phase difference is calculated over nine cycles for f vac ¼ 0:09 and z ¼ 0:02. In Fig. 14(b), the
calculation is done with a cycle-forward shift from what is shown in Fig. 14(a). The same phase difference behavior is

observed. These observations support the results shown in Section 3.2, i.e., VIV, for the conditions used herein, occurs

with unexpected phase angle variations due to the irregular forcing nature of the complicated flow patterns (Figs. 14(c),

14(d)).
Fig. 13. Time-variation phase-difference at VR ¼ 6:25 (f vac ¼ 0:08) for Re ¼ 8000: (a) z ¼ 0:02 and (b) z ¼ 0:0.
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Fig. 14. (a) Time-variation phase-difference over nine oscillatory cycles at VR ¼ 5:56 (f vac ¼ 0:09) and z ¼ 0:02 for Re ¼ 8000. (b)

Time-variation phase-difference over nine oscillatory cycles (one cycle forward from (a)) at VR ¼ 5:56 (f vac ¼ 0:09) and z ¼ 0:02 for
Re ¼ 8000. (c) Time-variation phase-difference over nine oscillatory cycles (one cycle forward from (b)) at VR ¼ 5:56 (f vac ¼ 0:09) and
z ¼ 0:02 for Re ¼ 8000. (d) Time-variation phase-difference over nine oscillatory cycles (one cycle forward from (c)) at VR ¼ 5:56
(f vac ¼ 0:09) and z ¼ 0:02 for Re ¼ 8000.
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4. Conclusions

When a self-excited transverse oscillation of a cylinder occurs with an irregular response behavior, there is

no phase-angle correlation between the forcing function and the cylinder oscillation at the intermediate

value of Reynolds number analyzed in this study. This observation is based on both a spectral analysis and

a complex demodulation of the LES calculations of Al Jamal and Dalton and by several other investigators as

mentioned earlier. This result is in contrast to what is frequently found when the cylinder motion is from a

forced sinusoidal oscillation or when the self-excited response is sinusoidal. In the case of constant oscillation

amplitude, the wake vortex patterns are repeatable and the established shedding patterns, 2S, 2P, P+S, etc., can occur.

In the self-excited case with an irregular response, the cylinder oscillation is not sustained sufficiently for the

expected vortex-mode patterns, from the sinusoidal oscillations, to develop or be established. The absence of the

expected vortex-mode patterns is responsible for the lack of a consistent phase angle between the forcing function and

the cylinder response. This complex problem requires further study before all of the questions posed earlier can

be answered.
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